Genetic-environment interaction (GxE) in fish

Quantitative traits are usually controlled by several genes as well as by environment influences. Environments could include stocking density, feeding, water quality management, ... etc

Hence: the phenotype of an individual (P) = G + E + G-E Whereas G= genetic make-up; E= environment & G-E= geneticenvironment interaction

G-E exists when various genotypes perform differently in different environments

If compared genotypes maintained their rank in different environments — no G x E

GXE (Example)

Genotype	Environment A	Environment B	
Strain A	80	60	No interaction
Strain B	60	40	
Strain A	80	60	Mild interaction
Strain B	60	60	
Strain A	80	50	Strong interaction
Strain B	60	70	

Genetic-Environment Interaction (GXE)in fish

Illustrated example:

Environment A: earthen ponds whereas the nutrition relies more on organic manure & supplemented by artificial feed

Environment B: earthen ponds with aeration and higher stocking density whereas complete artificial feed is the only source of nutrition

The data should be statistically analyzed and result of well-designed experiment starting with fish of the same size/age

Abdel Rahman El Gamal