Applications of Genetics in Aquaculture and Fisheries Practices

Abdel Rahman El Gamal, Ph D
Contents

- Main Genetic Parameters (phenotype and genotype)
- Qualitative and quantitative traits
- Phenotypic and genotypic variation
- Heritability and breeding programs
- Applications of genetics in aquaculture
 - Broodstock management
 - Selection
 - Hybridization
- Advanced genetics approaches (ploidy, androgenesis, gynogenesis and genetic engineering)
- Applications of genetics in fishery management (fishing practices, stock enhancement)
- Conclusion
Main Genetic Parameters
phenotype and genotype

- **Phenotype** \((P)\) tells how an individual looks = appearance (e.g. color, body shape, scaled, length, weight, etc.)
- **Phenotype** could be qualitative or quantitative
- **Genotype** \((G)\) is the genetic make up of an individual

Improving a phenotype through genetics is done via working on a hidden element (genetic make up)
Qualitative traits

Qualitative genetics is known after Gregor Mendel who established the mathematical basis of the inheritance in peas.

Qualitative traits have a distinct appearance (phenotype): either this or that; individuals can be placed in one of few discrete classes.

Each trait is controlled by one gene in most situations.

Inherited disease or colorations are examples.

These traits are not influenced by environmental conditions.

Selection for qualitative traits are designed to fix desired traits and eliminate undesired ones.

With some exceptions, qualitative traits are less important in aquaculture.
Qualitative traits in:

Aquaculture

- Red tilapia for Sushi dishes

Ornamental fish

- Coloration, small size could be far important than weight or FCR
Mirror carp a strain of common carp

Less scales is advantageous in regard to processing

Extremely important when scaleless fish is not socially acceptable

Naturally fully scaled common carp
Quantitative traits

Most productive traits are quantitative (weight, length, feed conversion “FCR”, fecundity,...)

Unlike qualitative traits, Quantitative phenotypes in a population exhibit continuous distributions

Controlled by several genes as well as could be affected by environment factors. Hence: the phenotype: \(P = G + E + G-E \)

In order to improve a phenotype trait, its variance should be analyzed and sorted into heritable and non-heritable components

Heritable component is what breeders are interested in

\(P = \text{phenotype} \quad G = \text{genotype} \quad E = \text{environmental influence} \)

\(G-E = \text{genetic x environment interaction} \)
Quantitative phenotype

Natural Distribution

Frequency

Weight (g)
Phenotypic and genotypic variance

• There should be a variance in order to attain some improvements through genetics

• If all individual are identical and look the same, there will not be a real chance for their improvement

• Variance in the appearance is phenotypic variance (V_p)

• Phenotypic variance (V_p) is the sum of: genetic variance (V_G), environmental variance (V_E), and the variance resulting from genetic-environmental interaction ($V_{G\cdot E}$)

$$V_p = V_G + V_E + V_{G\cdot E}$$
Environment Variance (V_E)

V_E has **no genetic basis**. This means that a phenotype could improve via environment regardless the genetic make up of the organism. An example of that when fish stocks perform better when farmed under optimum conditions compared to marginal growing conditions (water quality, feed, etc.)

If V_E is neither controlled nor quantified or got confound with V_G, it will not be possible to evaluate the genetic improvement and this can ruin a breeding program.

V_E **is not** transmitted from parents to offspring.
Environmental variance V_E (examples)

Shooting: This phenomenon was found in common carp, *Cyprinus carpio*. It is defined as a sudden and dramatic growth of the shoot individuals (shooters; jumpers)

Shooting have been attributed mainly to the competition for food and/or space. This could result of high stocking density & insufficient natural food, or due to the inadequate size of feed particles

If shooters are selected as broodstock, no progress should be expected
Environmental variance (examples- Cont.)

Egg size (Maternal effect): This occurs when a pronounced effect is found of egg size on the growth rate of early life of fish and when this effect disappears as fish gets older. In Nile tilapia, the effect was virtually gone by 20 days. Thus, selection should not be carried out before such effect disappears.

Because egg size could be influenced by environmental factors as well as genetics, in evaluation programs, it is crucial to use females of same age and comparable size, otherwise, detected differences in their progeny may be due to mother's age, size, or diet, and not to genetic makeup.
Heritability (h^2) is the proportion of variation in a quantitative phenotype trait that is caused by additive genetic variation among individuals

$$h^2 = \frac{V_A}{V_p}$$

The remaining phenotypic variation is usually attributed to environmental factors.

Heritability coefficient (h^2) ranges from 0–1 whereas zero refers to the non-genetic reason behind phenotypic variation while theoretical value “$h^2=1$” means that all of phenotypic variation is attributed to genetics.
Response to selection $R = \text{Heritability } h^2 \times \text{Selection Differential } D$

In selection, the response to selection could be adequately estimated.
Sexual dimorphism: phenotypic differences (qualitative or quantitative) for some traits between individuals of different sex in the same species.

In regard to size, females of eels grow to larger size than males of the same age.

In contrary, males of Nile tilapia are larger than females of same age.

Sexual dimorphism for size should be considered in selection programs otherwise most of selected fish would come from one sex (e.g. the heavier).
Inbreeding is the mating of relatives. Related individuals may share alleles (genes) through one or more common ancestors. If the harmful & recessive genes that are hidden in the heterozygous state are expressed through the mating of relatives, they will produce abnormal phenotypes which are known by “inbreeding depression” as expressed in deformity, poor performance, and could lead to mortality. Smaller mating population will result in higher possibility of inbreeding problems. Inbreeding and Effective Breeding Number – will follow.
Effective Breeding Number (N_e)

N_e is the best term describing the population size (from genetics point of view). Since population of fish is finite, it is better to describe it by N_e rather than absolute number.

Effective breeding number depends on the number of breeding individuals, sex ratio and mating system (random; pedigreed).

$$N_e = \frac{4(# \text{ females})(# \text{ males})}{# \text{ females} + # \text{ males}}$$

In random mating.
Effective Breeding Number (N_e)
Why important?

Tendency to keep less males due to:
Females **and not** males are the spawners.
Males compete with females for space/feed.
Males can mate with many females. Why keep more?

When value of numbers are not the absolute numbers?

Genetic value of 100
Could be obtained from:

50 M + 50 F = 100 **OR**
31 M + 130 F = 161 **OR**
Other M & F combinations

Genetic value of $20 M + 80 F = 64$
$15 M + 85 F = 51$

Low N_e = High inbreeding
Bottlenecks are sudden drastic decreases in population size.
The genetic effects of bottlenecks can be devastating/long-term problems.
The mean N_e over a series of generations is the harmonic mean, not the arithmetic mean. Thus, the generation with the smallest N_e has a disproportionate influence on the average value.

A bottleneck can dramatically lower mean N_e, and consequently will increase inbreeding and genetic drift (N_e over five generations):

<table>
<thead>
<tr>
<th>Generation</th>
<th>N_e</th>
<th>N_e</th>
<th>N_e</th>
<th>N_e</th>
<th>N_e</th>
<th>Arithmetic Mean</th>
<th>Harmonic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>100</td>
<td>40</td>
<td>100</td>
<td>100</td>
<td>88</td>
<td>76.9</td>
</tr>
<tr>
<td>2</td>
<td>0.01</td>
<td>0.01</td>
<td>0.025</td>
<td>0.01</td>
<td>0.01</td>
<td>76.9</td>
<td>55.5</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>100</td>
<td>20</td>
<td>100</td>
<td>100</td>
<td>84</td>
<td>55.5</td>
</tr>
<tr>
<td>4</td>
<td>0.01</td>
<td>0.01</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
<td>55.5</td>
<td></td>
</tr>
</tbody>
</table>

A single bottleneck can cause permanent genetic damage to the population.
Generation

Generation is the average time interval between the birth of parents and the birth of their offspring.

Generation interval is species-dependent. For example, it ranges from hours for bacteria, to weeks for many organisms, to about 6 years in dairy cattle.

In regard to farmed fish, generation intervals are about 3 years for trout, 4 years for salmon and about 6 months for Nile tilapia.

Because fish are cold blooded animals, shorter generation intervals for given species are possible in region with higher temperature.

Several biological outcomes are dependent on generation intervals; these include genetic gain and inbreeding levels. The shorter generation interval will be advantageous in selection gain while be disadvantageous in the accumulation of inbreeding.
Enhancing the Effective Breeding Number

Number of spawners/their sex ratio

This is done through spawning a sufficient number of broodstock that produces the target N_e.

This approach might come into conflict with the views of most hatchery managers who tend—for economic reasons—to spawn the fewest number of fish that meets production goals.

This matter is more obvious with highly fecund fish.

Bringing the sex ratio closer to equal ratio

If produced eggs/fingerlings are in excess of hatchery needs, an equal random sample from each spawn is kept; extras could be sold or even discarded.

Pedigreed mating

The N_e of a population can be “artificially” increased by using “pedigreed mating,” whereas each female leaves one daughter and each male leaves one son to be used as brood fish in the following generation.

This is an example of a conflict between production efficiency and proper genetic management of fish population.
Genetic consideration in broodstock management

Wild sources of hatchery broodstock:
- For first time ever
- For stock enhancement programs
- For species which cannot mature in captivity
- Others

From other hatchery/farm
- Proven efficiency under particular environments (GxE)
- Not passing through genetic bottlenecks (Brazil to USA)
- From maximum number of spawns
Genetic-environment interaction (GxE)

Does Exist When:
Various genotypes perform differently in different environments

If compared genotypes maintained their rank in various environments

No GxE interaction

Example: Common carp strains (Chinese and Polish) in:
- Different stocking densities
- Different feeding regimes (fertilization and artificial feed)
GXE (Example)

<table>
<thead>
<tr>
<th>Strain</th>
<th>Environment A</th>
<th>Environment B</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain A</td>
<td>80</td>
<td>60</td>
<td>No interaction</td>
</tr>
<tr>
<td>Strain B</td>
<td>60</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Strain A</td>
<td>80</td>
<td>50</td>
<td>Strong interaction</td>
</tr>
<tr>
<td>Strain B</td>
<td>60</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>
Genetic Environment Interaction (GXE) in fish

Genetic x environment does exist when evaluated strains perform differently in different farming environments

Environment A: earthen ponds whereas the nutrition relies more on organic manure & supplemented by artificial feed

Environment B: earthen ponds with aeration and higher stocking density whereas complete artificial feed is the only source of nutrition

The data should be statistically analyzed and result of well-designed experiment starting with fish of the same size/age

Abdel Rahman El Gamal
Application of genetics
Genetic enhancement approaches

Traditional Approaches
• Selection
• Hybridization

Advanced approaches
• Ploidy induction
• Gynogensis - Androgensis
• Genetic engineering
Selection – Selective breeding

The oldest approach for genetic improvement

It is simply a choosing the parents of coming generations (positive selection) and through culling (negative selection)

As long as V_A exists, progress due to selection accumulates over generations = response to selection as long as the raw material is there (variation)

Selection plateau is reached when genetic variation V_A is consumed – **No more progress**. In such case, an external interventions will be needed to create variations (e.g. mutation)
Selection (Selective breeding)

The concept: Choosing the “best” individuals to be the breeders

- G_0
- G_1
- G_2
- G_3

- Good genes to fix
- Bad genes to get rid of
Selection - moving the mean

The bell-shape curve remains

But
Population mean moves rightward
The response to selection continues in each generation until the genetic variation is consumed up = selection plateau
Sexual dimorphism: phenotypic differences (qualitative or quantitative) for some traits between individuals of different sex in the same species.

In regard to size, females of eels grow to larger size than males of the same age.

In contrary, males of Nile tilapia are larger than females of same age.

Sexual dimorphism for size should be considered in selection programs otherwise most of selected fish would come from the heavier.

If the same cut-off value is used for both sexes in case of dimorphism.

How to determine the selection cut-off value for each sex?
Cut-off values when sexual dimorphism exists

Determining the cut-offs:

Begin with random sample
Separate the sexes
Get individual values for the trait
Sort values in descending order
Scroll-down till reaching the planned number of fish to be selected – value against it is the cut-off value

In the example, the cut-off value is:
- 132 mm for males
- 106 mm for females

Diagram source: FAO
Theoretically:
The smaller the selected portion, the largest the selection differential (SD) as in B.
The largest the selection differential (SD), the highest will be the response to selection
$R = SD \times h^2$

(assuming the heritability coefficient h^2 is constant)
The question will remain how small the selected portion that leads to largest selection gain without inbreeding problems.
Selection strategies

Individual (mass) Selection: Choose the best
When h^2 for selected traits is high
Easy to conduct (methodology, facilities and recording)
Requires high heritability ≥ 0.25
Not favored by many fish breeders

Family Selection (select or reject the whole family)
When h^2 for selected traits is lower
Require more tagging & recording
Is a must for traits such as meat quality & dressing percentage
May lead to the loss of superior individuals in rejected families

Within Family selection
Saves superior individuals through keeping the best of each family regardless the family status

- Similar age of evaluated strains is a must
- A day difference can result in faulty outcomes
- Superior individuals may be discarded because of low family credit
Multiple-trait selection

Tandem selection
One trait at a time
Correlation between trait is an issue (especially negative)
Requires long time

The more the traits are, the most difficult will be the program

Independent culling
May restrict the size of selected population (depending on the cut-off value)
Possible loss of superior individuals because a shortage in another trait (shown in the graph)

Some modification was felt needed
Multiple Trait Selection
Independent Culling

Only individuals with 1.5 kg and above and with head : body of 12.5% and less are kept
Relaxing the cut-off value for a trait has saved superior individuals for the second trait.

Example: individual of 1.3 kg is selected due to its better dressing percentage (10%)
Multiple trait selection
Selection index

Economical in terms of time, money and effort when performing selection on several characters simultaneously
Reflect better the industry views (tilapia: growth, cold tolerance/late maturation; shrimp: growth, disease resistance)
Has been applied to key finfish (e.g. Atlantic salmon)
Currently applied for Pacific white shrimp, *Litopenaeus vannamei*

Relative importance of traits is considered in this program
Adding few grams to the weight may be less important than adding 1-2 degree centigrade in the tolerance to cold that means life or death
Response to selection on growth

<table>
<thead>
<tr>
<th>species</th>
<th>Gain per generation %</th>
<th>Number of generations</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coho</td>
<td>10.1</td>
<td>4</td>
<td>Hershberger et al., 1990</td>
</tr>
<tr>
<td>Rainbow trout</td>
<td>10.0</td>
<td>3</td>
<td>Kincaid et al., 1977</td>
</tr>
<tr>
<td>Rainbow trout</td>
<td>13.0</td>
<td>2</td>
<td>Gjerde, 1986</td>
</tr>
<tr>
<td>Atlantic salmon</td>
<td>14.4</td>
<td>1</td>
<td>Gjerde, 1986</td>
</tr>
<tr>
<td>Atlantic salmon</td>
<td>12.0</td>
<td>6</td>
<td>Gjerde and Korsvoll, 1999</td>
</tr>
<tr>
<td>Atlantic salmon</td>
<td>12.5</td>
<td>1</td>
<td>Flynn et al., 1999</td>
</tr>
<tr>
<td>Channel catfish</td>
<td>12.0-18.0</td>
<td>1</td>
<td>Dunham, 1987</td>
</tr>
<tr>
<td>Channel catfish</td>
<td>20.0</td>
<td>1</td>
<td>Bondary, 1983</td>
</tr>
<tr>
<td>Nile tilapia</td>
<td>15.0</td>
<td>5</td>
<td>Rye and Eknath, 1999</td>
</tr>
<tr>
<td>Rohu carp</td>
<td>17.0</td>
<td>2</td>
<td>Mahapatra et al., 2000</td>
</tr>
</tbody>
</table>
Fish selection and selection plateau

Assumptions:
- Weight of non-select remains constant over the generations

Observations:
- Selected populations continued to enjoy selection responses over generations
- However, the response to selection occurred at a declining rate over generations till the plateau is reached

The response to selection (R) is an accumulated gain every generation

\[R = \text{heritability coefficient} \times \text{selection differential} \]

Even h² is constant, the decrease in R results from the declining of SD – till reaching the plateau

selection plateau = selection variation is consumed

Selection plateau once reached, no gain could be achieved unless:

Variance is again created whether naturally or artificially (mutation)

Abdel Rahman El Gamal
Species purity and hybridization barriers:
Purity of species in nature is maintained through hybridization barriers:
 Biological: (chromosomal no.)
 Spawning seasons
 Reproduction requirements
In general, hybridization in nature is minimum while in captivity, chances may increase

Hybridization could be:
 Intergeneric (among genera)
 Interspecific (among species)
 Intraspecific (strains within species - cross breeding)
Hybridization is carried out for:

Hybrid Vigor: The tendency of hybrids to grow faster, get larger, tolerance more to specific conditions, or better dressing than their parents. Also called heterosis.

Sterility

Production of uniform progeny
All-male production – all-female production: Sexual maturation causes aggressiveness and reduce growth. This may favor one sex over other. In rainbow trout, all-female production is almost universally used in Europe as females are still immature at harvest. In **tilapia**, all-male production is preferred because of higher growth rate and to avoid unwanted reproduction.

Sterility: Examples:

- grass carp x bighead carp
- silver carp x common carp

Note: some hybrids are fertile; e.g. tilapia – Indian carps
Interspecific hybridization (e.g. tilapia)

Two species of tilapia can be crossed to yield all-male offspring.

Male Hornorum or aureus tilapia can be hybridized with the female of Nile tilapia to produce all-male offspring \((\text{theoretically})\).

Tilapia hybrid is \textit{fertile} and can backcross with parent species which could \textit{upset} the purity of parent species (Nile tilapia in Lake Victoria).

It is not recommended to carry out tilapia hybridization in Africa (the home of tilapia).
Interspecific Hybridization

Male Hornorum/aureus

ZZ

XX

Nile tilapia female

XZ

All-male hybrid tilapia

Why not 100% males?
Catfish

The hybridization between Asian catfish (*Clarias macrocephalus* – female) X African catfish (*Clarias gariepinus* - male) produced a hybrid that is superior to both parents in regard to growth rate.

The hybrid is favored for Thai aquaculture.

While Asian catfish is native to Southeast Asia, African catfish was introduced into Thailand a long time ago.
Indian major carps

Intergeneric Hybridization

<table>
<thead>
<tr>
<th>Female</th>
<th>Male</th>
<th>Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labeo rohita</td>
<td>Catla catla</td>
<td>~ 60% hatchability – high mortality of hatchlings – fry growth was higher than rohu</td>
</tr>
<tr>
<td>Cirrhina mrigala</td>
<td>Labeo rohita</td>
<td>> 90% of eggs were fertilized. Most of the body characteristics were intermediate to those of the parents. Both the hybrids matured fully in two years</td>
</tr>
<tr>
<td>Labeo rohita</td>
<td>Cirrhina mrigala</td>
<td>Twenty percent of the fertilized eggs hatched out but all of them died on the third day</td>
</tr>
<tr>
<td>Labeo rohita</td>
<td>Cirrhina reba</td>
<td>Source: H. Chaudhuri, Fish hybridization in Asia with special reference to India - FAO</td>
</tr>
</tbody>
</table>
Hatchery Broodstock

Hybrids which could be excellent for grow-out **cannot be broodstock**

For species purity, if hybridization is carried out in a hatchery, hybrids should be kept in isolate
Ploidy induction in fish

Why?

Sterility: (for environmental reasons): triploid (3n) fish are sterile (e.g. grass carp)

Higher growth rate: through saving the energy which could be spent in gonad development and spawning (triploidy)

Indirect means to produce triploidy (when tetraploidy (4n) mates with diploidy)

How?

Shock application
- **Heat shock:** water bath
- **Cold shock:** chiller, refrigerator
- **Pressure:** pressure chamber
- **Chemicals:** (e.g. cytochalasin B)
Preparing for fertilization between haploid gametes (1N) each

Fertilization

Resulted cell has 3 chromosomes from: ova, 2nd polar body (retained) and sperm

Apply the shock soon after fertilization

Without shock, second polar body is extruded and fallen and embryos with 2 chromosomes result

How soon the time of shocking depends on species and water temperature

Types, levels and durations of shock vary

3-N fish

Copyright: A. A. El Gamal
Triploidy (concerns and inspection protocol)

Issues of concern

Environmental concerns call for the use of triploidy fish if needed based on their sterility

It is assumed that sterile fish (triploids) will not cause environmental damages compared to diploid fish

However, triploidy fish might out-compete their diploid counterparts in regard to food or the spawning grounds

Inspection (example of triploid grass carp) – No chance for any mistake

Before grass triploid is licensed to leave the production facility, producers test their fish according to the protocol that has been set by USFWS:

Each fish must be individually blood tested by the producer using coulter counter to ensure it is triploid.

Afterward, a USFWS inspector visits the farm and randomly retests 120 fish from each prospective shipment.

If the 120 fish are triploid, a certificate is issued verifying that every fish in the prospective shipment is triploid.

If even one diploid is found during the inspection, no certificate is issued and every fish in the shipment must be individually retested by the producer.

Another 120 randomly selected fish must pass another USFWS inspection. If the inspection passes, and a certificate is issued, triploid grass carp may be shipped from the facility.
Summary of the process:
No shock is applied after fertilization and so 2nd polar body is extruded and fallen (as normal) - embryos with 2 chromosomes result.

Enough time should be allowed till cell chromosomes duplicate forming 4N.

Shock is applied to inhibit the first mitotic division resulting in a 4N cells that divides normally afterwards producing tetraploid fish.

Shock could be heat shock, cold shock, pressure or use of specific chemicals; timings, levels and durations of treatments vary.

Copyright: A. A. El Gamal
More chromosomal manipulation

YY tilapia super male

• Sex chromosome of Nile tilapia is (XX) for female and (XY) for male
• Normal mating produces 50% of each sex
• Using estrogen for 28 days during the larval phase, will end by phenotypic all-female fry
• 50% of these “feminized fry” are genetic females (XX) and 50% are genetic males (XY)

XX females are identified and discarded
• Reversed females (XY) when individually paired with normal males (XY), 25% of offspring will be super male (YY)
• Super males are marked and kept. When YY super males mate with normal female XX, the result is XY males

Progeny testing is required (squash technique) to identify genetic make-ups of females
Advanced genetic technologies

Gynogenesis:
Used for the production of off-springs having its genetic make-up only from mother. This is achieved through he use of irradiated sperm using UV which destroy its DNA but still activate the ova development.

Androgensis:
Used for the production of off springs having its genetic make-up only from father upon the fertilization of irradiated ova using UV which destroy its DNA by normal sperm.

Both approaches are used to produce highly inbred lines as required by some breeding programs.
Genetics in movies and imaginations

Androgensis

Hybridization

Sara Bernhardt: Imagine we had a child, and it had my looks and your brain.

George Bernard Shaw: Yes, but imagine if it had your brain and my looks.

The Boys from Brazil (1978)
Advanced genetic technologies
Genetic engineering (gene transfer)

Fish are ideal organisms for genetic engineering programs because of:

• High fecundity
• Short generation (utilized for other purposes)
• External fertilization
• Large size ova
Genetic Engineering

Gene transfer

Phases of application

Successful insertion of the gene
Expressing the transferred gene
Heritability of traits related to transferred genes

Concerns:
Will remain at experimental stage for some time
Significant opposition
Biosafety is a must during all phases of the experimentation
Genetically modified organism (s) (GMOs) – Genetic engineering organism

A living organism that inherited traits from another organism through the insertion of a gene from another organism using genetic engineering techniques.

Resulting organisms are always declared as GMOs according to biosafety regulations.

This technology has been used in several areas including plants, vaccines, foods, and medicine.

In relation to fish, genetic engineering research has commenced in several research institutes.

Fish with short generations could serve as an experimental animal whereas the outcomes may explain a phenomenon or could be applied to the target organisms with longer generations or could be extended to human (zebrafish and human muscular dystrophy).
Fishery practices & genetics

Fishing practices especially over-fishing act as a selective agent and can favor some genotypes over others affecting the genetic structure of natural populations.

Fish introductions in stock enhancement programs may contribute to changes in the genetic make-up of wild populations.

Examples
Atlantic cod (*Gadus morhua*)

On the Scotian shelf in the Northwest Atlantic, the sexual maturity of Atlantic cod declined from >5 years in the 1960s to <3 years in 1978 for both males and females.

Cod that matured at smaller size or younger age would have a selective advantage under heavy fishing pressure as the larger and older maturing cod would be captured before the onset of sexual maturity.

Using gillnets & whitefish

In heavily exploited populations of whitefish, *Coregonus clupeaformis* in Canadian lakes, fish matured at younger age and smaller size than fish from unexploited populations.

Fishing practices in Lake George, Uganda are claimed to reduce the mean size of Nile tilapia (*Oreochromis niloticus*) from 900 g in 1950 to 400 g in 1970.

In the Arcto-Norwegian stocks, the majority of Atlantic cod, *Gadus morhua* fish matured at 8-10 years in the 1930s while matured at 6 years in the present. This decline has been attributed to a selective removal of late maturing cod from the population.
There are genetic differences between hatchery produced stock and the wild population of the same species.

Predator avoidance, fecundity, aggressiveness and homing are traits of importance to wild stocks while not that important to aquaculture.

Noticeable problems may result from the mating of hatchery produced stocks with their wild counterparts.
Stock enhancement
Mitigation of possible risks

For a species with a long spawning seasons, it is advised to use multiple spawnings to avoid selecting for particular period spawners.

In order to reduce the possibility of domestication, seed produced in hatcheries should not be grown for the use as broodstock in stock enhancement programs. Instead, broodstock should be taken from wild –whenever possible- to maintain genetic diversity.

Ideal enhancement programs are the ones that include breeding with no genetic changes; in other words preserving the inherent, undomesticated genotypes.

Some international stock enhancement programs designate special hatcheries for stock enhancement (managed differently)
The possibility of enhancing fish production through management has delayed the utilization of genetics due to cost and time required & difficulty impression.

As aquaculture develops and challenges continue, it became obvious that husbandry practices have limits especially with issues of genetic nature (e.g. cold tolerance).

Artificial propagation in hatcheries represents a main step towards the application of genetics in aquaculture.

Fish genetics programs are the responsibility of research institutes, while mass production takes place in hatcheries.

The application of genetics that has been seen fancy in the past or in the present would be in application in the near future.