Video credit: Marcel Adaveleo (Madagascar) and Danial Osiyoye (Nigeria) Review: Abdel Rahman El Gamal (Founder of the video channel)
Historic information: As reported, the “In-pond raceway technology – IPR” was first developed in 2007 on a channel catfish farm in West Alabama, USA. Afterward, the technology was transferred to China in 2013 and then to more Asian countries including Vietnam, and India. Currently, the technology has been introduced to more countries around the globe. This video was filmed at the WorldFish Center in Egypt whereas Nile tilapia (Oreochromis niloticus) is the cultured species.
System description: The system relies on the creation of water circulation within the raceway units located in earthen ponds as well as on the removal of the organic wastes. The water circulation is done using paddlewheel aerators and/or air blowers. The use of low-speed paddlewheels provides a constant water current through the raceways. The aerators should be of capacity sufficient to create water flow of enough volume with particular velocity in the raceway cells which ultimately determines the frequency of water renewal within the raceway that in turn is a function of several parameters including the species, stocking density, and fish biomass.
In regard to the waste removal, the water and sludge are moved from the raceways into a waste-settling zone in the open pond from where the water is filtered before re-circulation, while the organic wastes are periodically collected using mechanical collectors. The organic waste products in the open pond are carried into the open pond area where they are processed naturally and at the same time stimulate the growth of natural organisms that in-turn becomes good food for other fish species especially in the open pond.
Typically, the raceways are constructed in parallel in a chosen corner of a traditional earthen pond with a center baffle to provide for a continuous circulation pattern around the pond and through the raceways.
Advantages: The IPR as mentioned ultimately targets higher production of high-quality fishery products that result from the healthy environment that ensures higher growth rate and survival, efficient feed conversion ratio, and other production traits.